207 research outputs found

    Energy aware performance evaluation of WSNs

    Get PDF
    Distributed sensor networks have been discussed for more than 30 years, but the vision of Wireless Sensor Networks (WSNs) has been brought into reality only by the rapid advancements in the areas of sensor design, information technologies, and wireless networks that have paved the way for the proliferation of WSNs. The unique characteristics of sensor networks introduce new challenges, amongst which prolonging the sensor lifetime is the most important. Energy-efficient solutions are required for each aspect of WSN design to deliver the potential advantages of the WSN phenomenon, hence in both existing and future solutions for WSNs, energy efficiency is a grand challenge. The main contribution of this thesis is to present an approach considering the collaborative nature of WSNs and its correlation characteristics, providing a tool which considers issues from physical to application layer together as entities to enable the framework which facilitates the performance evaluation of WSNs. The simulation approach considered provides a clear separation of concerns amongst software architecture of the applications, the hardware configuration and the WSN deployment unlike the existing tools for evaluation. The reuse of models across projects and organizations is also promoted while realistic WSN lifetime estimations and performance evaluations are possible in attempts of improving performance and maximizing the lifetime of the network. In this study, simulations are carried out with careful assumptions for various layers taking into account the real time characteristics of WSN. The sensitivity of WSN systems are mainly due to their fragile nature when energy consumption is considered. The case studies presented demonstrate the importance of various parameters considered in this study. Simulation-based studies are presented, taking into account the realistic settings from each layer of the protocol stack. Physical environment is considered as well. The performance of the layered protocol stack in realistic settings reveals several important interactions between different layers. These interactions are especially important for the design of WSNs in terms of maximizing the lifetime of the network

    Analysis of Denial-of-Service attacks on Wireless Sensor Networks using simulation

    Get PDF
    Evaluation of Wireless Sensor Networks (WSN) for performance evaluation is a popular research area and a wealth of literature exists in this area. Denial-of-Service (DoS) attacks are recognized as one of the most serious threats due to the resources constrained property in WSN. The Zigbee model provided in OPNET 16 is suitable for modelling WSNs. This paper presents an evaluation of the impact of DoS attacks on the performances of Wireless Sensor Networks by using the OPNET modeller. Numerical results, discussions and comparisons are provided for various simulation scenarios. The results can be of great help for optimisation studies in WSN environments under DoS attacks as well as understanding the severity and critical nodes within the WSN. The effects of DoS attacks on the performance of WSNs are considered to critically analyse these issues

    On demand multicast routing in wireless sensor networks

    Get PDF
    The wireless networking environment presents imposing challenges to the study of broadcasting and multicasting problems. Developing an algorithm to optimize communication amongst a group of spatially distributed sensor nodes in a WSN (Wireless Sensor Network) has been met with a number challenges due to the characterization of the sensor node device. These challenges include, but are not limited to: energy, memory, and throughput constraints. The traditional approach to overcome these challenges have emphasised the development of low power electronics, efficient modulation, coding, antenna design etc., it has been recognised that networking techniques can also have a strong impact on the energy efficiency of such systems. A variety of networking based approaches to energy efficiency are possible. One of the well-known approaches is to apply clustering techniques to effectively establish an ordered connection of sensor nodes whilst improving the overall network lifetime. This paper proposes an improved clustering based multicast approach that allows any cluster head to be a multicast source with an unlimited number of subscribers, to optimize group communication in WSNs whilst ensuring sensor nodes do not deprecate rapidly in energy levels. We review several clustering approaches and examine multicast versus broadcast communication in WSNs

    Deployment challenges and developments in wireless sensor networks clustering

    Get PDF
    Clustering techniques for wireless sensor networks (WSNs) have been extensively studied and proven to improve the network lifetime, a primary metric, used for performance evaluation of sensor networks. Although introduction of clustering techniques has the potential to reduce energy consumption and extend the lifetime of the network by decreasing the contention through either power control or node scheduling, scalability remains an issue. Therefore, the optimality of the cluster size still needs to be thoroughly investigated. In this paper, a single cluster head (CH) queuing model is presented. Using an event based simulation tool (Castalia), key issues that affect the practical deployment of clustering techniques in wireless sensor networks are analysed. These include identifying the bottlenecks in terms of cluster scalability and predicting the nature of data packets arrival distribution at the CH. Results presented show that this analysis can be used to specify the size of a cluster, when a specific flow of data is expected from the sensing nodes based on a particular application and also the distribution of the inter-arrival times of data packets at the CH follows exponential distribution

    Packet arrival analysis in wireless sensor networks

    Get PDF
    Distributed sensor networks have been discussed for more than 30 years, but the vision of Wireless Sensor Networks (WSNs) has been brought into reality only by the rapid advancements in the areas of sensor design, information technologies, and wireless networks that have paved the way for the proliferation of WSNs. The unique characteristics of sensor networks introduce new challenges, amongst which prolonging the sensor lifetime is the most important. WSNs have seen a tremendous growth in various application areas including health care, environmental monitoring, security, and military purposes despite prominent performance and availability challenges. Clustering plays an important role in enhancement of the life span and scalability of the network, in such applications. Although researchers continue to address these grand challenges, the type of distributions for arrivals at the cluster head and intermediary routing nodes is still an interesting area of investigation. Modelling the behaviour of the networks becomes essential for estimating the performance metrics and further lead to decisions for improving the network performance, hence highlighting the importance of identifying the type of inter-arrival distributions at the cluster head. In this paper, we present extensive discussions on the assumptions of exponential distributions in WSNs, and present numerical results based on Q-Q plots for estimating the arrival distributions. The work is further extended to understand the impact of end-to-end delay and its effect on inter-arrival time distributions, based on the type of medium access control used in WSNs. Future work is also presented on the grounds that such comparisons based on simple eye checks are insufficient. Since in many cases such plots may lead to incorrect conclusions, demanding the necessity for validating the types of distributions. Statistical analysis is necessary to estimate and validate the empirical distributions of the arrivals in WSNs

    Does the assumption of exponential arrival distributions in wireless sensor networks hold?

    Get PDF
    Wireless Sensor Networks have seen a tremendous growth in various application areas despite prominent performance and availability challenges. One of the common configurations to prolong the lifetime and deal with the path loss phenomena having a multi-hop set-up with clusters and cluster heads to relay the information. Although researchers continue to address these challenges, the type of distribution for arrivals at the cluster head and intermediary routing nodes is still an interesting area of investigation. The general practice in published works is to compare an empirical exponential arrival distribution of wireless sensor networks with a theoretical exponential distribution in a Q-Q plot diagram. In this paper, we show that such comparisons based on simple eye checks are not sufficient since, in many cases, incorrect conclusions may be drawn from such plots. After estimating the Maximum Likelihood parameters of empirical distributions, we generate theoretical distributions based on the estimated parameters. By conducting Kolmogorov-Smirnov Test Statistics for each generated inter-arrival time distributions, we find out, if it is possible to represent the traffic into the cluster head by using theoretical distribution. Empirical exponential arrival distribution assumption of wireless sensor networks holds only for a few cases. There are both theoretically known such as Gamma, Log-normal and Mixed Log-Normal of arrival distributions and theoretically unknown such as non-Exponential and Mixed cases of arrival in wireless sensor networks. The work is further extended to understand the effect of delay on inter-arrival time distributions based on the type of medium access control used in wireless sensor networks

    Constitutive optimized production of streptokinase in Saccharomyces cerevisiae utilizing glyceraldehyde 3-phosphate dehydrogenase promoter of Pichia pastoris

    Get PDF
    A novel expression vector constructed from genes of Pichia pastoris was applied for heterologous gene expression in Saccharomyces cerevisiae. Recombinant streptokinase (SK) was synthesized by cloning the region encoding mature SK under the control of glyceraldehyde 3-phosphate dehydrogenase (GAP) promoter of Pichia pastoris in Saccharomyces cerevisiae. SK was intracellularly expressed constitutively, as evidenced by lyticase-nitroanilide and caseinolytic assays. The functional activity was confirmed by plasminogen activation assay and in vitro clot lysis assay. Stability and absence of toxicity to the host with the recombinant expression vector as evidenced by southern analysis and growth profile indicate the application of this expression system for large-scale production of SK. Two-stage statistical approach, Plackett-Burman (PB) design and response surface methodology (RSM) was used for SK production medium optimization. In the first stage, carbon and organic nitrogen sources were qualitatively screened by PB design and in the second stage there was quantitative optimization of four process variables, yeast extract, dextrose, pH, and temperature, by RSM. PB design resulted in dextrose and peptone as best carbon and nitrogen sources for SK production. RSM method, proved as an efficient technique for optimizing process conditions which resulted in 110% increase in SK production, 2352 IU/mL, than for unoptimized conditions.Ravi N. Vellanki, Ravichandra Potumarthi, Kiran K. Doddapaneni, Naveen Anubrolu and Lakshmi N. Mangamoor

    4(2) 50 Case Study Dapsone Hypersensitivity Syndrome in a Leprosy Patient

    Get PDF
    ABSTRACT Introduction: Dapsone Hypersensitivity Syndrome (DHS) is a rare potentially fatal systemic idiosyncratic adverse reaction, with multiorgan involvement also known as sulphone syndrome which is particularly seen in leprosy patients who are on world health organization recommended multidrug therapy (WHO-MDT regimen). DHS is a variant of drug rash with eosinophilia and systemic symptoms (DRESS syndrome) caused by dapsone. Even though reaction common in the leprosy patients there is need such reporting to identify the most venerable patient pool. Case: Here we present a case of DHS developed after 25 days in a female patient with a history of PB-MDT regimen treatment, high grade intermittent fever associated with nausea, myalgia, headache since 20 days; swelling of face, bilateral lower limbs and erythematous rashes were observed all over the body since 4 days. She was presented with fever (102.2 0 F), posterior cervical and axillary lymphadenopathy and moderate bilateral lower limb pitting pedal edema was present. Multiple erythematous papules coalesced all over body predominantly involved on the face, trunk and extremities. The main laboratory data on admission were showed, hemoglobin: 9.6 g/dL; WBC: 14.6 x 10³/ µL; neutrophils: 48% mild left shift, lymphocyte: 20% reactive forms; eosinophils: 16%; increased serum levels of aspartate amino transferase, alanine transaminase and alkaline phosphatase. Patient was improved and discharged on treating with antipyretics, antibiotics, oral and topical corticosteroids and antihistamines

    Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    Get PDF
    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost andduringmushroomformation.The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation aremore highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics
    • …
    corecore